
                                                                   Volume 32, 2017 

1 

 

 
 

 

 

 

 
Ionic Components of Wound Current at Mouse Skin Incisional Wounds  

 
Zhongren Sun1, 2*, Jinhuan Yue1, 2* and Qinhong Zhang2,3 

 
1 Neurobiology Laboratory of Acupuncture and moxibustion, Heilongjiang University of Chinese Medicine, Harbin, 150040, China. 

 
2 Department of Acupuncture and Moxibustion, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, 

 

China.  
3 Department of Health Research and Policy, Stanford University, CA, 94305, USA.         

Abstract: It has been assumed that skin wound currents are produced by passive ion leakage from wounded skin. However, 

what ions contribute to the skin wound  current? Thirty male C57BL/6 mice were used in this study. A lancet wound (about 

5mm in length) was made by cutting into the full thickness skin. We measured the dynamic time courses of individual ion flux 

with ion-selective probes at skin wound. The probe is aligned perpendicular to the surface of skin wound. All ions (Na+, Cl-, 

K+, Ca2+ and H+) showed a small steady efflux at unwounded mouse skin. However, there were large efflux of Na+, Cl-, K+, 

Ca2+ and H+ 15 minutes after wounding. These values maintained for 534 seconds, which were significantly higher than the 

ions flux of intact skin (P< 0.05). Our results suggest that Na+, Cl-, K+, Ca2+ and H+ contribute to the wound currents at skin 

wounds. A most significant observation is that the skin wound currents are carried mainly by the largest sodium and chloride 

efflux, then potassium, while the calcium and hydrogen are the least. 
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Introduction 

 
Endogenous wound electric fields were first identified more than 

150 years ago by the German physiologist Emil Du-Bois Reymond 

(1). Such electric fields are generated when the epithelial layer is 
disrupted instantaneously and the lesion short-circuits the 

transepithelial potential diffe-rence (2-7). Electric currents at wounds 

in human skin (4, 8-11) and in rodent cornea and skin (5, 7, 12-13) 

have been measured with various techniques, such as vibra-ting 
probes, micro-glass electrodes, micro-needle arrays, and bioelectric 

imagers (5, 12, 14-16). For example, it is reported that a large 

outward current of 4 mA cm-2 was measured at the wound edges of 
rat cornea and human skin. This current gradually increased to 10 mA 

cm-2 and persisted at 4-8 mA cm-2 (17).  
Electric signals play a critical role in cell migration during wound 

healing (5, 17-18). It has been shown that exogenous fields directs 
many types of cells to divide, migrate and differentiate in the process 
of electrotaxis, a phenomenon that many types of cells respond to 
applied electric fields by directional cell migration, such as skin 
epithelial cells (19), corneal epithelial cells (20-23), kera-tinocytes 
(24-25), fibroblasts (26) and neuronal cells (27-29).  

It has been confirmed that consistent and sustained outward 

electric currents are found at wounds in human skin and in rodent 

cornea and skin (4-5, 7-13). Our own and other studies have shown 

that ions fluxes (Na+, Cl-, K+, Ca2+, H+) contribute to the wound 

currents. However, the wound currents from different tissues result 

from different 

 
major ions fluxes. For example, Cl- mainly contributes to rat cornea 

wound currents (30). However, what about the skin wound currents? 

In this study, we will find out what kinds of ions fluxes contribute to 

the skin wound current. 

 
Materials and Methods 

 
Materials 

All ions fluxes (Na+, Cl-, K+, Ca2+ and H+) were mea-sured 

noninvasively using SIET (SIET system BIO-001A; Younger USA 
Sci. & Tech. Corp.; Applicable Electronics Inc.; and ScienceWares 

Inc.) at the Xu-Yue company (Sci. & Tech. Co. Ltd, Beijing, China; 

http://www.xuyue. net). Electrodes were calibrated in Ionophore 
Cocktails A (K+(0.3 Mm), Cl-(0.3 mM), Na+(0.4 mM), Ca2+(0.05 

mM)) (containing 0.1 mM KCl, 0.05 mM CaCl2, 0.1mM NaCl, 0.1 

mM KH2PO4, 0.1 mM NaHCO3, 0.1 mM Na2HPO4,  
5.6 mM Glucose, pH7.2) and Ionophore Cocktails B (K+(3.2 mM), 

Cl-(14 mM), Na+(10.3 mM), Ca2+(0.5 mM)) (containing 3 mM KCl, 

0.5 mM CaCl2, 10mM NaCl, 0.1 mM KH2PO4, 0.1 mM NaHCO3, 

0.1 mM Na2HPO4, 5.6 mM Glucose, pH7.2). The H+ was also 

calibrated in the same Ionophore Cocktails A and Ionophore 

Cocktails B, but pH was adjusted from 7.2 to 7.6 and from 7.2 to 6.7 

respectively. The tips of the ion-selective microelectrodes used to 

measure the ions fluxes of skin wound mouse were dipped in the test 

solution (K+(0.6 mM), Cl-(1.7 mM), Na+(1.3 mM), Ca2+(0.1 mM)) 

(containing 0.5 mM KCl, 0.1 mM CaCl2, 1mM NaCl, 0.1 mM 

KH2PO 4, 0.1 mM NaHCO3, 0.1 mM Na2HPO4, 5.6 mM Glucose, 

pH7.2). 
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Table 1. The basic information of electrodes.  
 

Name Catalog number Source Used for tissue 

    

Na+ Φ5±1μm , XY-DJ -01 YoungerUS A skin 

Cl- Φ9±1 μm , XY-DJ 01 YoungerUS A skin 

K+ Φ5±1μm , XY-DJ -01 YoungerUS A skin 

Ca2+ Φ5±1μm , XY-DJ -01 YoungerUS A skin 

H+ Φ5±1μm , XY-DJ -01 YoungerUS A skin  
Preparation of the ion selective microelectrodes 

Take Cl--selective microelectrodes for example, the preparation 
of ion selective microelectrodes was descri-bed as follows: first, pre-

pulled and silanized glass mi-cropipettes (Φ9±1μm, XY-DJ01, 

YoungerUSA (Youn-gerUSA LLC, Amherst, MA01002, USA), Table 
1) were first filled with a backfilling solution (100 mM KCl, Table  
2) to a length of approximately 1.0 cm from the tip. The 

micropipettes were front filled with 15-50μm columns of selective 
liquid ion-exchange cocktails (Cl- LIX, XY-SJ-Na, YoungerUSA, 

Table 2). An Ag/AgCl wire electrode holder (XY-DJGD, 
YoungerUSA) was inserted in the back of the electrode to make 

electrical contact with the electro-lyte solution. YG003-Y05 
(YoungerUSA) was used as the reference electrode. 
 
Calibration of the ion selective microelectrodes 

Prior to the flux measurement, the microelectrodes were 
calibrated with cultural media having different concentrations of Cl-, 
1.7 mM and 0.3 mM respectively. Only electrodes with Nernst slope 
< -53 mV/decade were used in our study (Table 2). The same 
microelectrodes were calibrated again according to the same 
procedure and standards after each test. Data was discarded if the 
post-test calibrations failed.  
The microelectrode moved repeatedly from one point to another 
perpendicular to the surfaces of skin at a fre-quency of cl. 0.3Hz. 

Moreover, the distance between two points is usually between 5 to 

35μm, and we used 30μm throughout the experiments. 
 
Animals & Wound Model 

Thirty male C57BL/6 mice (18-22g) were used in this study. All 
mice were housed according to the National guidelines for the care 

and use of laboratory animals. All protocols were approved by the 
Institutional Animal Care and Use Committee of the Heilongjiang 

University of Chinese Medicine. Mice were anaesthetised by 
intraperi-toneal administration of pentobarbital sodium (60 mg/kg) 

 
Table 2. The related parameters of various LIX.  

 

before the measurement. Hair from the back was shaved and then the 

area was antisepticised with VEET Cream. We made a lancet wound 
(about 5mm in length) by cutting into the full thickness skin, one 

wound on each mouse, six mice for each ion flux (11). 
 
Measurement of ionic flux at skin wounds 

We access the different regions of the skin wound to find out the 
largest ion flux. Take Cl- flux for an example, we move the probe to a 

reference position near the wound edge and start recording a baseline. 
When a stable baseline has been established, move the probe to the 
measuring po-sition. The probe is aligned perpendicular to the surface 

of skin wound. The distance from among the different mea-suring 
positions is about 300μm. Observe the trace until it becomes stable, 
and stop measuring when it falls back to baseline. 

 
Statistical analysis 

Data were analyzed using Microsoft Excel and results are 
expressed as mean ± standard error (SE). Statistical si-gnificance was 

assessed using Student’s t test and P <0.05 was considered 

statistically significant difference. 

 
Results 

 
We present the data from ion-selective measurement as ion flux, 

calculated and recorded data with the probe in self-referencing mode 

close to the wound center.  
We first measured Na+ flux at unwounded mouse skin, and it 

showed a slightly efflux. However, a larger efflux of Na+ of 24.37 

nmol cm-2 s-1 was tested at skin wound center 15 minutes after skin 

wounded (P< 0.01), this value was maintained for 534 seconds 
(Figure 1).  
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

Figure 1. Sodium flux at skin wounds. 
 

Name 

Catalog 

Source Sigma batch CS-LIX-C Backfilli n g solution 

Nernst S lope 

number (mV/decade)       

       

Na+ XY-SJ -Na YoungerUS A  #71178 15-50μm 250 mM NaCl > 53 

Cl- XY-SJ -C l YoungerUS A  #24902 15-50μm 100 mM KCl  < -53 

K+ XY-SJ -K YoungerUS A  #60031 180μm 100 mM KCl  > 53 

Ca2+ XY-SJ -C a YoungerUS A  #21048 15-50μm 100 mM CaCl 

2 

> 26 

       

H+ XY-SJ -H YoungerUS A  #95293 15-50μm 15 mM NaCl +40 > 53 

     mM KH2P O 4 , pH 7.0   
Note: LIX: liquid ion exchangers; CS-LIX-C: columns of selective LIX cocktails. 

 



                                                                   Volume 32, 2017 

3 

 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 
Figure 2. Chloride flux at skin wounds. 

 
We then determined Cl- flux. We saw a small chloride efflux in 

unwounded mouse skin. Fifteen minutes after wounding, it reached to 
larger efflux and sustained an average value of 20.70 nmol cm-2 s-1, 

that was significantly greater than unwounded flux (P < 0.01) (Figure 

2).  
Potassium efflux at unwounded mouse skin was slight-ly above 

the background. However, there was a rapid and large increase of 
potassium efflux at skin wound center from 0.43 nmol cm-2 s-1 to 

4.41 nmol cm-2 s-1 15 minutes af-ter skin wounded (Figure 3). This 
high level of potassium efflux then dropped slowly, reaching a lower, 

stable value at 3.19 nmol cm-2 s-1 from 103-636 seconds after 
wounding which remained significantly higher than unwounded va-
lues (P < 0.01) (Figure 3).  
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

Figure 3. Potassium flux at skin wounds.  
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

 

Figure 4. Calcium flux at skin wounds. 

 

 

Intact skin showed a small efflux of calcium ions of 

26.00 pmol cm-2 s-1. This value immediately reached up to 105.65 
pmol cm-2 s-1 15 minutes after skin wounded (P < 0.01) (Figure 4). 
This large efflux of Ca2+ still increased slowly to 160.46 pmol cm-2 
s-1 with an average value of 113.1436 pmol cm-2 s-1 from 103-636 
seconds, which is still significantly higher than unwounded values (P 
< 0.01) (Figure 4).  

We found a small efflux of protons of 0.46 pmol cm-2 s-1 at 

unwounded mouse skins. The H+ efflux changes si-gnificantly up to 
1.013297 pmol cm-2 s-1 15 minutes after wounding. This value 

increased upon to 1.83 pmol cm-2 s-1 20.2 minutes after wounding, 
and maintained for 222 seconds with average value of 1.59 pmol cm-2 
s-1, which is significantly higher than the unwounded value (P < 

0.05) (Figure 5).  
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

 

Figure 5. Hydrogen flux at skin wounds. 

 

Comparing the relative contributions of different ion fluxes to the 

skin wound current showed an overriding contribution of Na+ and Cl-

, then partly contributions of K+, and negligible of Ca2+ or H+ 

(Figure 6). We chose 537 seconds time point to collect data of the 

efflux of five ions. Thus, Na+ and Cl- contribute to mouse skin 

wound mainly. 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

Figure 6. Relative contributions of ions to mouse skin wound current. 

 
Discussion 

 
It has long been assumed that endogenous wound elec-tric fields 

played a very important role in wound healing, because endogenous 

electric currents and cells generated from wounds, which responded to 

applied electrical si-gnals during the period of wound healing (2, 5, 7, 

11, 19, 
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31-38). Some experimental evidence showed that wound current was 
detected from skin wounds (1, 15, 39-40). However, we still do not 
know what kinds of ions fluxes contribute to the skin wound current.  

In this study, we studied the ionic components of natu-rally-

occurring wound current of mouse skin wound. We used noninvasive 

apparatus SIET to measure the concen-tration gradient of Na+, Cl-, 
K+, Ca2+ and H+ by selective vibrated microelectrodes; and repeated 

between two points in the predefined fashion. The ionic fluxes were 

calculated based on the Fick’s law of diffusion. First, the miro-volts 

differences of the measured ions were exported as raw data. Then, 
imported and converted them into net ionic fluxes by using the JCal 

V3.2.1 (a free MS Excel spreadsheet, youngerusa.com or 

ifluxes.com).  
Our study find out that Na+ and Cl- make the most contributions, 

then K+ contributes partly to skin wound current, while the Ca2+ and 
H+ make negligible contribu-tions, which is different from the cornea 
wound current, mainly by a large influx of chloride ions, and in part 
by effluxes of calcium and potassium ions (30).  

Previous study found out that chloride flux is essen-tial flux in 
corneal epithelial cells in amphibians (41, 42). However, in this study, 
we found the largest sodium efflux, and then chloride efflux. This 
may suggest that sodium flux significantly contribute to the electric 
current at skin wounds.  

We have measured large ions efflux at skin wounds, which had a 
dynamic time course with ion selective mi-croelectrode 

measurements. For example, all ions (inclu-ding Na+, Cl-, K+, Ca2+ 

and H+) efflux at wound center with stable value 15 minutes after 
wounding and the dynamic time courses lasted 537seconds, except 

K+ efflux dropped slowly and Ca2+ and H+ efflux increased slightly, 

which are still significantly higher than the unwounded value.  
The results of this study suggest a very important as-pect in skin 

wound healing. The dynamic changes of spe-cific ion fluxes, such as 
Na+, Cl-, K+, Ca2+ and H+ after skin wound suggest that electrical 
signaling is an active res-ponse to skin wound and offers potential 
intervention for skin wound healing, especially for chronic wound, 
such as pressure ulcers (43-46).  

In summary, sodium and chloride efflux form a signi-ficant 

portion of the skin wound current, and then partly consist of 

potassium, calcium and hydrogen ions with time courses. Further 

study can be dig based on this study. 
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